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Our quest to supply multigram quantities of cephalostatin Scheme 1. Biomimetic Strategy of North 1 and South 7
analogues to the clinic has featured improved syntheses of several = - o} . x or B
Southern hemispheres, including ritterazing'@3-deoxy cepha- [ - ~—
lostatin 1, and 17-hydroxy, 23-deoxy cephalostatin 1. Combining A %
these segments with the North 1 segment has given a series of potent%“m ”%%
agents exhibiting promising cell-line specificity. S X e iy

Completing the goal requires a vastly improved preparation of
South 7 and several variants of the North 1 hemisphere. Our Ho Hg*
approach to these materials involves conversion of the plant-derived, ’
hecogenin acetaté to spiroketals2H and 20H.2 In concept,
electrophilic opening o2H or 20H could give the corresponding
oxonium ions3H or 30H. Furthermore, the enol frorfBH may HO Ho*
serve as a precursor #tOH. Conversion o4H and40H to key ﬁ;’gﬁ
polyols 7H and 70OH requires elimination to5 followed by
dihydroxylation to D-ring diene6. Cephalostatin-related steroidal 1IJORTH ;
D-ring dienes have previously been subjected te-[2] reactions
with singlet oxygerf, but this communication reports the first  Scheme 2. Synthesis of Dienes 15a—c and 16a—d
appropriately oxygenated, stereodefined substrates that deliver a a/B=18 oA
synthetically relevant outcome.

Olefinic polyols7H and70OH each have the potential of being
in equilibrium with four diastereomeric hemiketals, of whighnd
10 appear preordained to suffer mild acid-catalyzed cyclization to
9 and11, respectively. Alternatively, ionization of the C-14 tertiary
allylic alcohol of 7 may result in capture of the C-22 ketone
followed by kinetic closure of the spiroketal, again potentially
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yielding 9 and 11 or their diastereomers (Scheme 1). h( ::c :=ZOR2 o
. . . . . . A= = s
Acid-catalyzed ring-opening reactions of steroidal spiroketals are 14 g19, over 3 steps Table 1, 53-91%
generally based upon the seminal 193940 Marker protocot. a. BF4 OEt,, Et;SiH, CH,Cly; b. imidazole, PhyP, I, E,O/CH,CN; c. DBU, DMF, 90
The reaction conditions are quite severe {8£200°C, 10 h), and °C, 1 h; d. 1.5 eq. TFAT, 1.2 eq. 2,6-di-tert-butyl-4-methylpyridine, CH,Cl,, -30 °C,

substrates such a3 bearing a D-ring olefin decompose when 1h;e. 2 eq. Ngzcoa, THF/H,O/MeOH, rt, 9 h, 92% over 2 steps; f. 1.5 eq. TBSOTT,
. L. . 5 eq. 2,6-lutidine, CH,Cl, 0 °C, 3 h, 95%; g) 2.5 eq. DMSO, 3 eq. TFAA, 3 eq.
subjected to these conditions. Our new procedure iNVolves I0W pipga, cH,Cl,, -78 °C to 1t, 94%; h. 10 mol% Sc(OT)s, 10 eq 1,3-diol, 10 eq.

temperature €30 to —40 °C) treatment of spiroketals with tri- (MeO);CH, CH3CN, tt, 17 h.

fluoroacetyltriflate (TFAT) for 2 h, followed by cold, aqueous

workup® Application of this protocol to steroidH gave dihydro- face of the D-ring diene, while the corresponding five conformers
furan12. If one allows the reaction to reach room temperature, the of the 5-methyl isomer block the bottom face (Figure 1).

product is ring-opened dierl8, which has unfortunately suffered In the event, C-22 ketals6a—c (from 15cin 91, 53, and 91%

equilibration of the doubly activated C-20 stereocenter (Scheme yield, respectively)°® smoothly underwent [4- 2] cycloaddition
2). The problem was avoided by reaction1ef?? with TFAT to of singlet oxygen in 86:98% yield (entries 46), stereospecifically
provide dienyl trifluoroacetaté5ain high yield with no loss of providing a-face adducts. In striking contrast, but consistent with
C-20 stereochemistry. Mild hydrolysis and Swern oxidatiohr(igs the model in Figure 1, unnatural C-21 methyl ketéH gave only
base is essential to avoid C-20 isomerization) afforded the the expected-adduct20d-f (entry 7).

equilibration-sensitive ketongsc with only a trace epimerization With selective cycloaddition achieved, biomimetic synthesis of
at C-20 (Scheme 2). the South 7 hemisphere was next addressed. Conversion of terminal
The biomimetic hypothesis was initially tested with died&s— olefin 14 to differentially protected C-25,26 di@lao. (not shown)

¢, which added singlet oxygen in high yield, but gave no facial was accomplished in three operations with 93% yield add3:1
preference (Table 1, entries—B). Molecular modeling of C-22 de with either C-25 selectivity as a function of catalyst in the
propylene glycol ketals prefigured the singlet oxygen reaction as a Sharpless AD reaction (see Supporting Information).

function of the conformational bias of the C-21 methyl moiety. Cleavage of the isolable and characterized pero2Riea (see
Specifically, it appears that the natural Ce2thethyl ketal exists Supporting Information) with Zn/HOAc provided digBa-a in 86%

as a group of three low-energy conformers, which shield the top yield (Scheme 3). The stage was now set to deprotect R8tat

13122 = J. AM. CHEM. SOC. 2005, 127,13122—-13123 10.1021/ja0531935 CCC: $30.25 © 2005 American Chemical Society



COMMUNICATIONS

Table 1. [4 + 2] Cycloaddition of Steroidal D-ring Dienes with Singlet Oxygen
R R®
i R4 i R4
TPP, O,, sun lamp
-78°C,1~15h
17-19p
AcO 16a,b,c,d 20a,b,c-a 208
entry R! R%LR3 R* R’ diene product facial selectivity” yield (%)
1 a-Me OCOCF;3, H H AP 15a 17/17B alf=13:1 ns?
2 a-Me OTBS, H H AP 15b 18a/18B alf=1:1 ns®
3 a-Me o) H AP 15¢ 190/198 alf=1:1 ns®
4 aMe  Fo~~"0% H A% 16a 20a-a° a-adduct only 98°®
yJ: 2y
5 a-Me o ¥ 0° H A® 16b 20b-a a-adduct only 80°
r
N 3
6 a-Me ‘J{O/><\O< H AP 16¢ 20c-a a-adduct only 94°
. 3
7 S-Me I{O/X\O/’ OCOCF; H 16d 20d-B S-adduct only 81°

a Calculated by crudéH NMR spectrum; ns= not separated Isolated yields

C-20 Alpha
methyl

Figure 1. Molecular models of C-22 propylene glycol ketals.

Scheme 3. Completion of Synthesis of South 7 (28)
OBz
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AcO
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to ketone7 and test the plan for formation of spirokefa{Scheme
1) by selective monodeprotection at C-25,26.

After many unsuccessful attempts at ketal deprotection, treatment

of 23aa via HCN catalysis (controlled release from aqueous
DDQ)% afforded the unexpected, but welcome, hydroxypropyl ether
25, presumably via ketal participation followed by hydrolysis of
intermediate oxonium ioB84. Oxidation to26, concurrent cleavage

of silyl ether and acrolein give®7, which, upon a finishing
acidification, directly gave the South 7 spiroke28in 66% yield
accompanied by the C-25 diastereon#3-epi resulting from
parallel processing of the inseparable C-25 diol carried forward

from the stage of the Sharpless AD reaction (Supporting Informa-

tion).

¢ Structure confirmed by X-ray crystallography. See Supporting Information.

In conclusion, the above synthesis affords a new, practical route
to the South 7 hemispherg8 in 20% overall yield over 16
operations from hecogenin acetatel his compares with our first-
generation synthesis that required 25 operations with an overall
yield of 2%1! In addition, this communication provides a biomi-
metic strategy potentially appropriate for a vastly improved
synthesis of the crucial North 1 hemisphere and its analogues.
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